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Supplemental Procedures

In what follows, we provide a detailed description of the methods used in this study. The iPAGE
software along with a minitutorial and other results from this study (both experimental and
computational) are available online at http:/tavazoielab.princeton.edu/iPAGE/. Our approach,
described here, involves the discovery of the informative cis-regulatory elements and cellular pathways
from gene expression datasets; a subsequent analysis recovers the pathways that are likely regulated
by the identified putative binding sites. A schematic of the FIRE/iPAGE framework is presented in
Figure 1 and Figure S12.

Pre-processing of input datasets

All cancer microarray datasets used in this study where downloaded from GEO
(http://www.ncbi.nlm.nih.gov/projects/geo/). Each cancer versus normal dataset was converted into
continuous or discrete gene expression profiles, as follows.

In the continuous case (i.e., urinary bladder cancer), each gene was associated with a continuous
expression value based on the following equation:

() v=s(-p).

where p is a p-value calculated by performing a Student’s #-test between the cancer samples and the
normal controls. s is the sign of the difference between the average values in these two sets. Thus, v
indicates the extent to which a gene is up-regulated or down-regulated in the cancer state with maximal
and minimal values of 1 and -1 respectively.

In the discrete case, genes were first clustered into ~JN groups (N is the total number of genes) based
on their expression values in the normal and tumor samples, using the k-means unsupervised clustering
approach. Then the clusters whose average expressions did not differ between the normal and cancer
samples (nominal p-value from z-test > 0.05, where the #-test is performed on the expression profiles in
each cluster) were combined into a single background cluster. Subsequently, each gene was associated
with the cluster index of the cluster to which it belongs.

FIRE: De novo discovery of informative regulatory elements

FIRE was used with default settings, as described in Elemento et al, 2007.

iPAGE: A detailed explanation of the algorithm

Expression profile

An expression profile is defined across N genes, where each gene is associated with a unique
expression measure. Expression measures, discrete or continuous, can be obtained from a variety of
gene-level measurements or analyses. For example, cluster indices from a partitioning process or the
ranks obtained from sorting are discrete measures; whereas, results from a single microarray or any
continuous-type statistic (e.g., p-values) are continuous values. In this study we have demonstrated this
unifying capacity of iPAGE; e.g., in the bladder carcinoma we have used a continuous statistic derived
from Student’s #-test while in the BL vs DLBCL case we employed discrete indices obtained from
clustering of gene expression values across all the samples. From here forward, we refer to these lists
of input values as expression profiles. Schematized continuous and discrete expression profiles are
shown in Figure S13.



Pathway Profile

Each gene can be associated with a subset of M known pathways (e.g. from the Gene Ontology
annotations). For each pathway, the pathway profile is defined as a binary vector with N elements, one
for each gene. In this profile, “1” indicates that the gene belongs to the pathway and “0” indicates that
it does not. A schematized pathway profile is shown in Figure S13.

Quantizing continuous expression profiles

Although the concept of mutual information is defined for both discrete and continuous random
variables, in practice, continuous data are discretized before calculating the mutual information (MI)
values. Our quantization procedure is based on the maximum entropy principle (so as to make the least
assumptions about the underlying data distribution), and involves using equally populated “expression
bins”. Thus, the discretization step only requires a single parameter, i.e., the number of genes in each
bin. In the default iPAGE settings, the number of bins (/V,) is determined by:

(2) N,-N, =N/50

where N, is the number of bins in the pathway profile (here N,=2). Although determining N, values
from Eqn. (2) allows a reliable calculation of mutual information (Slonim et al., 2005), other values
can also be explored by the user. In this study, we used the continuous mode in one of the datasets and
variations in the number of bins did not significantly change the results. Indeed, when we ran FIRE
and iPAGE on the bladder carcinoma dataset with various numbers of bins (10, 50, 100 and 250), the
identified seeds (k-mers) largely overlapped, with hypergeometric p-values always less than 1le-53
(down to 1e-281 in some comparisons). We made the same observation for the number of iPAGE-
identified pathways, with hypergeometric p-values always less than 1e-20 (down to 1e-83).

Calculating the mutual information values
Given a pathway profile and an expression profile with Ne bins (or clusters), we create a table C of
dimensions 2x Ne, in which C(1, j) represents the number of genes that are contained in the ;™
expression bin and are also present in the given pathway. C(2, j), on the other hand, contains the
number of genes that are in the /™ expression bin but are not assigned to the pathway. Given this table,
we calculate the empirical mutual information as follows:
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where P(i, j)=C(i,j )N, P(i)= ZIP(i,j) and P(j)= IZP(I',]).

Randomization-based statistical testing

To assess the statistical significance of the calculated MI values, we use a non-parametric
randomization-based statistical test. Given / as the real MI value and keeping the pathway profile
unaltered, the expression profile is shuffled 10,000 times and the corresponding MI values /iandom are
calculated. A pathway is accepted only if / is larger than (1-max_p) of the landom values (max_p is set
to 0.005 by default). This corresponds to a p-value < 0.005. In iPAGE, pathways are first sorted by
information (from informative to non-informative). Starting from the most informative pathway, the
statistical test described above is applied to each pathway, and pathways that pass the test are returned
(provided they also pass the conditional information test described below). When k contiguous
pathways in the sorted list do not pass the test, the procedure is stopped (% is set to 20 by default).

Removing redundantly informative pathways



Due to the hierarchical and nested nature of pathway annotations (e.g. Gene Ontology), many
pathways display some level of redundancys, i.e., two pathways may be represented by very similar sets
of genes (e.g. GO:0006511, ubiquitin dependent protein catabolic process and GO:0019941,
modification dependent protein catabolic process). To discover representative pathways and remove
redundant ones, we require that each returned pathway be highly informative about the expression
profile, but also bring a significant amount of new information compared to all other significantly
informative pathways as calculated by conditional mutual information (Cover and Thomas, 2006). To
achieve this, we require that each candidate pathway fulfills

@) 1 (candidate pathway;expression | accepted pathways) P
1 (candidate pathway; accepted pathway)

for all already accepted pathways, i.e., all pathways that have already passed the statistical and
conditional information tests. An identical criterion was used in FIRE (Elemento et al., 2007). In
iIPAGE, r is set to 5 by default and only the pathways satisfying the above equation are presented in the
graphical output; however, the list of all significant pathways is also created and stored as a text file.

Pathway over- and under-representation

Informative pathways are generally over-represented or under-represented in certain expression
clusters/bins. To quantify the level of over- and under-representation, the hypergeometric distribution
is used to calculate two distinct p-values:

[m )( N - m)
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(6) Ponder (X < x)= 2 N for under-representation,

where x equals the number of genes in the given expression bin/cluster which are also assigned to the
given pathway. m is the number of genes assigned to the pathway, n is the number of genes in the

expression bin and N is the total number of genes. If poyer<punder, We consider the pathway to be over-
represented in the expression bin/cluster; otherwise, it is under-represented.

iIPAGE graphical output

The over- and under-representation p-values described in the previous section are used to draw a
heatmap, i.e., a graphical representation of pathway over- and under-representation across all
expression bins/clusters. In this heatmap, the rows represent the significantly informative pathways and
the columns are the expression bins/clusters. Colors indicate over- or under-representation levels. The
red color-map indicates (in logjo) the over-representation p-values; whereas, the blue color-map shows
under-representation.

Additional iPAGE output files
In addition to the graphical heatmap, iPAGE generates files containing the actual log(p-values) for
over- and under-representations, and the list of removed redundant pathways.



False Discovery Rate (FDR)

In order to measure the FDR of our method, we randomly shuffled the gene labels of the gene
expression profile and counted the number of pathways discovered compared to the non-shuffled data.
We have tabulated the results in Table S1, for the BL vs DLBCL and bladder cancer expression
datasets (continuous and clustered profiles).

iIPAGE command line
The basic command line syntax for iPAGE is :

perl page.pl --expfile=<inp> --species=<sp> --exptype=<type>

where <inp> indicates the input expression profile (a two-column tab-delimited text file with gene
names in the first column and expression measures in the second), <sp> indicates the species, and
<type> indicates whether the expression profile is discrete (e.g., cluster indices) or continuous (e.g.,
expression values obtained from a single microarray experiment). We have prepackaged pathway
annotations for many species, ranging from bacteria to human.

For example, the following command line will run iPAGE on a continuous E. coli expression profile :

perl page.pl --expfile=./TEST/continuous.exp --species=human_go --exptype=continuous

iIPAGE creates an expfile PAGE directory where the results are saved to
(/TEST/continuous.exp PAGE in this case).

Pathway-Regulatory Interaction Map Generator (PRMG)

Motif definition

As described in (Elemento et al., 2007), regulatory elements (motifs) are defined as regular
expressions and can only consist of the following characters: A, C, G, T, [AC], [AG], [AT], [CG],
[CT], [GT], [ACG], [ACT], [AGT], [CGT], and N (equivalent to [ACGT]).

Motif profile

We look for motifs both in 5” upstream (DNA motifs) and in 3’UTR sequences (RNA motifs). Given a
motif, the motif profile is defined as a binary vector with N elements, where for each gene, “+1”
indicates the presence and “0” indicates the absence of the motif in the corresponding promoter (or
3’UTR). “1” indicates that at least one match of the regular expression is present in the sequences (see
Figure S14). For 5° sequences both strands are searched; whereas, in 3° UTR sequences only the
transcribed strand is considered.

We used a generic definition of active motif profile (Elemento et al., 2007) to build the pathway-
regulatory map; i.e., we only count the motif occurrences that are in expression cluster/bins in which
the motif is over-represented. This approach filters out motif occurrences that are unlikely to be
functional.

Pathway Profiles
For each pathway, the pathway profile is defined the same as in iPAGE.

Creating pathway-regulatory interaction maps



In the first step, we calculate the mutual information between the motif profile and pathway profile for
each pair of motifs and pathways. We then assess the significance of these associations through 1,000
random shuffles of the motif profile and recalculating the MI values. By default, a category is accepted
only if the real MI is larger than 995 of the random values. The associations that pass this test are

deemed significant and their under- or over-representation p-values are calculated using equations (5)
and (6).

Graphical output

We build a matrix with motifs as columns and pathways as rows where the non-zero elements
represent the —loglO(p-value) in case of over-representations and loglO(p-value) otherwise. This
matrix is then visualized as a blue-red heatmap with red and blue elements representing positive and
negative associations respectively. A schematic representation of this method is shown in Figure S14.

PRMG command line
The PRMG script (prmg.pl) is part of the iPAGE package and is located in the PAGEvx.x directory;

however, it also reliess on FIRE outputs to run (FIRE is available at
http://tavazoielab.princeton.edu/FIRE/):

export FIREDIR=/path/to/FIRE
export PAGEDIR=/path/to/iPAGE
perl prmg.pl --expfile=<inp> --species=<sp>

where <inp> indicates the input expression profile, <sp> indicates the species. The script does not
work on expfile itself, but uses it to locate iPAGE and FIRE summary files (in expfile PAGE and
expfile FIRE directories).

For example, the following command line will run PRMG on a continuous expression profile:

perl prmg.pl --expfile=/TEST/continuous.exp --species=human_go

The results are written to a motif cat.cdt file and the graphical representations are created in the
motif cat.eps and motif cat.pdf files. In order to run this program you also need to install the cluster
3.0 perl binder at http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm and define a
global variable termed USRDIR pointing to the directory where this binder is installed:

export USRDIR=/path/to/cluster3
Experimental validation of the discovered regulatory associations

Transfection of siRNAs targeting Elk1 and NFYA transcription factors

ON-Targetplus™ (Dharcomon) set of siRNAs for each TF were transfected into MDA-MB-231 cells
(growin in D10F medium) using Lipofectamine™ 2000 (invitrogen). 72 hours after transfection, RNA
samples were extracted from the cells (mirVana™ miRNA Isolation Kit) and were subjected to cDNA
synthesis (SuperScript® III RTS First-Strand cDNA Synthesis Kit from Invitrogen). mRNA knock-
down in each sample was verified using SYBRE Green qPCR reactions (Universal ProbeLibrary
Assay Design Center, Roche Applied Science). For each TF, we selected two of the successfully
knocked-down transfections and extracted their total RNA along with mock-transfected cells as
controls. We then differentially labeled the RNA samples with Cy3 and Cy5 dyes and hybridized them
to Agilent human gene expression arrays (4x44k). The genes with significant discordant changes
between the two biological replicates were filtered out and for the rest, the Cy3/Cy5 values were
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averaged and combined into a single dataset as log of ratios. The expression profiles are available at
http://tavazoielab.princeton.edu/iPAGE/.

Transfection of decoy and scrambled oligonucleotide sequences

For the validation experiments, we chose two of the genes implicated by FIRE to have a version of
AAAA[ATG]TT (NM 000337 and NM_001024660). For each gene, we then synthesized a 19bp
sequence containing the AAAA[ATG]TT motif. These sequences were also randomly shuffled to
create scrambled sequences as controls. The resulting sequences were synthesized as double stranded
oligonucleotides: Decoyl: caattGAAATTTTGagcaa, Scrambledl: gtTtATAcAcTaaaGaTGa, Decoy2:
gctggAAAAAATTTaagac, Scrambled2: aagATTgctAgAAgAaATc. We then transfected these
oligonucleotides into MDA-MB-231 cells grown in DIOF medium at a concentration of 1 uM
(TransIT®-Express Transfection Reagent). 72 hours post-transfection, we extracted RNA and
differentially labeled the samples with Cy3 or CyS5 dyes. The samples were then hybridized to Agilent
human gene expression arrays (4x44k). The Cy3/Cy5 ratios from the two sets were then averaged,
filtered and combined in a single dataset as log of ratios. In this step, we filtered out ~2000 genes that
showed significantly discordant expression level changes in the two biological replicates. The
expression profile is available at http://tavazoielab.princeton.edu/iPAGE/.




Supplemental Results

IPAGE and Gene-set Enrichment Analysis

As mentioned in the main text, a variety of powerful approaches have been developed for gene-set
enrichment analysis (e.g., Sinha et al., 2008; Subramanian et al., 2005). These computational methods
rely on different statistical tests to assess the non-random distribution of pathway-membership across
the expression values. For examples, Sinha et al. (2008) use the hypergeometric distribution to
calculate the overlap between gene-expression clusters and pathway-memberships. Subramanian et al.
(2005), on the other hand, use a rank-based approach to discover non-random patterns. These
approaches are well-defined, powerful and tested; however, in a setting where a large number of
statistical tests are performed, sensitivity is reduced mainly because of multiple-testing corrections.

In iPAGE, we employ mutual information to tackle this problem. Although iPAGE is only one
component in our broader approach, it provides major advantages over the previous methodologies:

1. In comparison with the hypergeometric distribution, using a mutual information-based method
notably decreases the number of statistical tests necessary (by the number of clusters/bins),
resulting in a higher sensitivity at the same false discovery rate.

2. Mutual information also enables iPAGE to analyze both discrete and continuous inputs making
it a universal approach for analyzing any type of data without the need for any upstream
analysis. This is particularly important in this study where we analyze different whole-genome
datasets.

3. i1PAGE is also capable of discovering non-monotonic associations, a category that is masked in
rank-based methods. In these associations, different components of a pathway may show
opposite expression patterns relative to each other. For example, a number of metabolic
pathways include both biosynthetic and catabolic genes and an increase in the final product
typically requires the simultaneous down-regulation of the catabolic genes and up-regulation of
the biosynthetic genes.

4. In iPAGE, we use conditional information to substantially reduce the redundancy, which in
turn results in a concise and manageable graphical output.

5. We have been extra careful in limiting the computational expenses and our package is
relatively fast. Also, we have attempted to make iPAGE as user-friendly as possible. In
addition to the complete command-line version, we have developed Graphical User Interfaces
for both Mac OS X and windows users for rapid and every-day use of the application by non-
experts.

The Regulatory Network of Bladder Carcinoma

The general method for meta-analysis of bladder cancer vs normal dataset used in the main text
(Dyrskjot et al., 2004) reveals the most prominent signatures of a cancer state: in this case, a faster cell
cycle and a repressed immune response through the regulatory effects of E2F and SEF1/E47
transcription factors respectively. We also identified a range of significant cis-regulatory elements,
including a putative 3’UTR element, NUNGNUGU (seed UAGAUGU/TAGATGT) (Figure 2B, main
text). Our approach also reveals that several of these motifs co-occur in promoters or 3’UTRs of the
same genes (Figure S1A), thus suggesting possible cooperations between the regulatory factors that
bind them. In order to provide additional evidence for these predicted cooperations, we used the
approach described in Pilpel et al. (2001) to compare the extent to which two of the novel motifs (one
DNA and one RNA) cooperate with the Elk-1 motif in co-regulating their target genes. First, we
selected 1000 random pairs of genes and used Pearson correlation to calculate the correlation
coefficient (R) between the expression levels of each pair across the bladder carcinoma dataset
(Dyrskjot et al., 2004). We then repeated the same procedure, this time on the set of genes harboring an
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Elk1 motif in their upstream sequence. As it is shown in Figure S1B, the distribution of the resulting
R-values from Elk1 target genes is shifted to the right compared to the random background values (p-
value <le-14). The genes harboring the DNA motif [ACGJACGT[CT][CGT][AG][CGT] (seed
ACGTCGQG), show a distribution similar to that of Elk1 (p-value <le-15) and focusing on the genes
that harbor both of the motifs results in an even larger shift towards higher R-values (p-value <le-15).
The p-values reported in each case have been calculated using Mann-Whitney test, comparing each
distribution to that of the background. Repeating this procedure for [ACUJU[ACU]G[ACGJUGU
(seed UAGAUGU/TAGATGT), resulted in comparable distributions (Figure S1B). These observations
further highlight the biological relevance of the discovered novel motifs and provide additional support
for the predicted motif interactions.

While the continuous analysis of bladder carcinoma signatures apparently captures a global picture of
deregulations, it does not take into account intra-cancer variations and may hide pathways that are
deregulated in different subsets of samples. In order to increase our sensitivity in capturing a broader
range of pathway deregulations, we first clustered the genes based on their expression across normal
and tumor samples and then combined the clusters with low average differences between normal and
tumor into a single background cluster. The informative pathways that iPAGE discovered from this
discrete input data were generally similar to the pathways obtained when analyzing the continuous
profile, as described in the main text. However, iPAGE also identified NF-xB, PI3-K and Rho
signaling pathways as globally up-regulated in the tumor samples (Figure S15). Genes involved in
“Negative regulation of apoptosis” also show a substantial increase in their expression compared to
normal samples (Figure S15).

The identification of additional pathways without an increase in FDR (Table S1) suggests that using a
cluster-based approach, which takes into account the intra-cancer variability, may increase sensitivity
and reveal additional pathways. Interestingly, the benefits of using this approach become even more
apparent when we search for cis-regulatory elements. We identified 128 significantly informative
motifs, a summarized version of which is presented in Figure S16. The sequence motifs discovered in
the continuous analysis are included among the new set of motifs (e.g. E2F and SEF-1); however, this
analysis reveals many new known and novel regulatory elements including p53, Elk-1, Sp1, NF-Y and
CRE-BP1 (Figure S16).

Among the known regulatory elements, Elk-1, Sp1, NF-Y and E2F show a significant association with
“DNA replication” compared to E2F alone in the continuous method. E47 and SEF-1 are associated
with the “immune response” pathways (Figure S17). In addition to these, we also captured the role of
STAT3 transcription factor in cell cycle regulation. The signal transducers and activators of
transcription (STATs) are a family of proteins with key roles in cellular differentiation and
proliferation. Among these, STAT3 is known to be involved in coordinating G1-S transition (Fukada et
al., 1998).

In the pathway-regulatory interaction map (Figure S17), up-regulation in the “protein folding” genes is
associated with HSF (Heat Shock Factor). In higher eukaryotes, HSF binds the heat shock element
(HSE) located in the promoters of heat shock genes to activate their transcription as part of the
unfolded protein response (Amin et al., 1988). In addition to its apparent role in protein folding, HSF is
also believed to participate in general immune response (Singh and Aballay, 2006) potentially
explaining its association with this pathway in our analysis (Figure S17).

Besides the abovementioned transcription factors, we should also highlight the role of SRF in
regulating the “cell junction” pathway. Assembly and disassembly of cell-cell junctions comprise a
number of key events during physiological and pathological processes. The role of serum receptor
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factor (SRF) as a potential regulator of this process has been previously established by in vivo
observation of the deficiencies in mutant backgrounds (Busche et al., 2008). As highlighted in our
results (Figure S17), deregulation in the activity of this transcription factor may be crucial for tumor
metastasis (i.e. benign to malignant transition).

A substantial fraction of cis-regulatory elements discovered in this study correspond to the binding
sites of known transcription factors. The expression of these transcription factors can be viewed in the
context of this dataset or other independent whole-genome datasets. This would enable us to compare
the presence or absence of a given transcription factor to the expression of its putative downstream
genes. Such analysis can act as a validation step for both the discovered motifs and the functions
associated with them through the “pathway-regulatory interaction map”. For example, here, we have
focused on two transcription factors from the bladder carcinoma dataset: Elk1 and TFDP1 (a protein
that binds E2F and promotes its DNA binding affinity; Crosby et al., 2007). Elkl, which was
associated with mitosis, RNA splicing and ribosome biogenesis in our study (Figure 2C, main text),
shows a significant anti-correlation with these genes, suggesting that it functions as a repressor (Figure
S2). Similarly, TFDP1, which is a partner in E2F complexes, is significantly correlated with the
expression of the genes in the E2F associated functions, namely DNA replication, microtubule
biogenesis and mitotic cell cycle (Figure S3). We have also included the same analysis for AhR and its
predicted association with Ub-dependent protein catabolic process (Figure S4).

In addition to GO pathways, we also used the MSigDB c2 gene-sets to re-analyze the bladder cancer
dataset in its continuous format (as presented in the main text). The iPAGE results are presented in
Figure S18. Up-regulation of many cancer-related genes and cell-cycle pathways along with a down-
regulation of immune response pathways (e.g. cytokine pathway, IL and TNF mediated inflammatory
responses) match the results presented based on the GO pathways in the main text. We have also
included the pathway-regulatory interaction map obtained from these gene-sets (Figure S19).

Comparative analysis of cancer sub-types (BL vs. DLBCL)

Due to space limitations, for this analysis, we only included a limited number of deregulated pathways
in the figures of the main paper. Here, however, we have presented the iPAGE and FIRE outputs with
the complete list of the deregulated pathways and informative sequence motifs (Figure S5A and B).
Some of the matrices presented here and in the next section are too large to be legibly fit in a page;
however, the figures are vector graphics and can be enlarged when viewed electronically.

Similar to the Elkl and TFDPI1 analysis for the bladder carcinoma dataset, in Figure S6, we have
included the expression of NF-Y (as the average expression of NFYB and NFYC genes) and SP1 in
comparison with the expression of their associated downstream pathways. NF-Y, associated with cell
cycle and chromatin biogenesis, is highly correlated with the genes in these pathways (p-value < le-
30). Sp1 shows a similar correlation with cell cycle and secretory pathways (p-value < 1e-12).

Building a regulatory map of cancer deregulation

Next, we studied regulatory perturbations across many cancer types to capture both globally
deregulated and more cancer-specific pathways. We compiled a compendium of 46 cancer versus
normal gene expression microarray datasets (see Table S2). We then processed the samples and used
iPAGE to build a cancer pathway map (Figure S7 and Figure 5 in the main text). This systematic
iPAGE analysis of cancer datasets allowed us to compare the corresponding cancers based on their
pathway-level perturbations. In order to do so, we used hierarchical clustering to cluster the cancers
based on their informative pathways (listed in Figure 5, main text). The clustering results and the
correlation matrix are shown in Figure S20. The hierarchical clustering tree in Figure S20 shows that
independent cancer datasets of similar types are also similar in terms of their informative (and
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therefore deregulated) pathways. For example, in this figure, all non-small cell lung datasets are
grouped together in one cluster (Beer et al., 2002; Bhattacharjee et al., 2001; Stearman et al., 2005)
distinguishing them from the single small cell carcinoma (SMCL) dataset (Bhattacharjee et al., 2001).
Among all the cancers, two samples in particular show a highly negative correlation with others: a
melanoma dataset (Hoek et al., 2006) and a chronic lymphocytic leukemia (CML) dataset (Alizadeh et
al., 2000). This anti-correlation largely results from a lower expression of cell cycle related genes in
both of these tumors (Figure 5, main text). As Alizadeh et al. (2000) noted, CML is a slowly
progressing disease with a low proliferation rate. Similarly, despite being highly metastatic, a cohort of
melanoma samples in this dataset has been shown to have a low proliferation rate (Hoek et al., 2006)
thus explaining the lower expression of mitotic genes in this cancer.

We also used FIRE on our compendium to build a cancer regulatory map. In essence, sequence motifs
whose associated genes show significant deregulation in the tumor samples are identified and compiled
to form this regulatory map (Figure S8). Apart from their independent occurrences in multiple datasets,
most of these motifs also have high network-level conservation scores (Figure S9). Figure S9 also
includes the cis-regulatory elements identified in the bladder carcinoma and lymphoma datasets.

Subsequently, using an information-theoretical approach, we associated the discovered cis-regulatory
elements with the deregulated pathways to build a cancer pathway-regulatory interaction map (Figure
S10). In Table S3, we list a number of novel and significant associations from this map, representing
an unknown regulatory protein (or miRNA) potentially regulating the associated pathway through
recognition of the corresponding sequence motif. In some cases, we have predicted novel associations
for known transcription factors (or miRNAs). In Figure S11, we have used the NCI-60 gene expression
panel to test some of these novel associations. For example, we have predicted Lmo2-complex as a
direct regulator of PI3K signaling and cell migration. The members of these pathways that harbor an
Lmo?2 binding site are highly correlated with the expression of this transcription factor (Figure S11).
We observed similar correlations between TCF3 (E47 complex) and the inflammatory response
pathway and miR-203 and protein degradation pathway (Figure S11).

Here, we have also included the cancer pathway map built from MSigDB c2 gene-sets in Figure S21.
The procedure is the same as above, with the exception that we have used MDigDB c2 gene-sets
instead of GO terms (biological processes).

The discovered motifs are informative of gene expression patterns across independent datasets
We used the human gene-expression atlas (Su et al., 2004) and NCI-60 gene expression panel (Ross et
al., 2000) to further test the functional relevance of our discovered elements. We clustered the genes in
these two datasets into 70 clusters using the k-means approach, and then used FIRE in non-discovery
mode (a mode in which the motif discovery is skipped and all the steps are performed on a set of input
motifs) to test whether our 104 identified motifs show a significant non-random pattern across these
datasets. As shown in Figure S22 and Figure S23, 74 of these motifs have significant mutual
information values with the expression clusters further strengthening the evidence for the role of these
elements in regulating gene expression.

FIRE analysis of experimentally tested associations

As shown in Figure S24, we used FIRE to also analyze our gene expression profiles from both decoy
vs. scrambled dataset and TF knock-down datasets. In the AAAA[ATG]TT dataset, in addition to
ATAJAT][GT][CT]T[AT] (which resembles the reverse complement of AAAA[ATG]TT), we also
discovered Elk4 and another novel motif (Figure S24B). The observed deregulation in the Elk4
downstream genes explains the up-regulation in the cell cycle genes, as this TF is a known modulator
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of mitosis. Similarly, we observed an up-regulation in the genes harboring the CCAAT motif in the
NFY A knock-down dataset (Figure S24C).
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Legends

Figure S1. Measuring co-regulation in the downstream genes of novel motifs. (A) The regulatory interaction
matrix for the bladder carcinoma cis-regulatory elements. (B) 1000 gene pairs are selected from bladder
carcinoma dataset (Dyrskjot et al., 2004) and the distribution of their Pearson correlation coefficients is plotted.
The background set includes all the genes in the dataset; whereas ‘Elk1’ is limited to the genes harboring Elk1
motifs in their upstream sequences. Similarly, TAGATGT plot represents the genes harboring
[ACUJUJACU]G[ACGJUGU (a novel 3> UTR element). We have also included this distribution for the
simultaneous occurrence of these two motifs. Similarly, the distribution of R-values are shown for Elkl and
ACGTCGG (a upstream element [ACG]ACGT[CT][CGT][AG][CGT]) and their simultaneous presence.

Figure S2. EIk1 expression across the bladder carcinoma samples and its comparison with target genes
within the associated pathways. The expression of each pathway is calculated as the average normalized
expression of the genes listed. A regression test is then used to calculate the correlation coefficients and their
associated p-values.

Figure S3. TFDP1 (E2F associated protein) expression and its comparison with E2F associated pathways
across the bladder carcinoma samples.

Figure S4. The correlation of transcription factor AhR with Ub-dependent protein catabolic process.

Figure S5. The complete iPAGE (A) and FIRE (B) outputs for the BL vs DLBCL dataset. While Figure 2A
and B contain a summarized version of these results, here we have included the complete outputs.

Figure S6. The normalized expression of NF-Y and Sp1 across the BL vs. DLBCL samples along with the
expression of their target genes.

Figure S7. The complete cancer pathway map without redundancy removal.

Figure S8. Cancer regulatory map. The level of significance by which the genes harboring a given putative
cis-regulatory element are up or down regulated is depicted here. This matrix is formatted to include only the
known motifs and those that are significantly associated with more than 3 cancers.

Figure S9. Network-level conservation scores. This figure shows our discovered motifs and their network-
level conservation scores with respect to the chicken genome (Elemento and Tavazoie, 2005). Values range
from 0 to 1, with 1 being most conserved.

Figure S10. The complete cancer pathway-regulatory interaction map.
Figure S11. The expression level of Lmo2, TCF3 and miR-203 modules across the NCI-60 panel.

Figure S12. Conceptual schematic of our computational framework. We start from a gene expression
dataset and use iPAGE and FIRE to discover the deregulated pathways and cis-regulatory elements that are
informative of gene expression patterns. We then use pathway-regulatory interaction map (PRM) analysis to
functionally annotate the identified motifs through associating them with their potential downstream pathways.

Figure S13. iPAGE schematic. Two exemplary expression profiles are shown: discrete (e.g. cluster indices
from co-expression clustering) and continuous (e.g. log of fold change in expression level in the tumor sample
compared to normal). Mutual information is then used to assess the level by which given pathway profiles are
informative of these expression profiles.

Figure S14. Pathway-Regulatory Interaction Map Generator. The discovered informative pathways (from
iPAGE) and putative cis-regulatory elements (from FIRE) are combined in this approach to associate regulatory
proteins with their target pathways.
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Figure S15. Bladder carcinoma versus normal samples (discrete mode). The informative pathways
discovered by iPAGE that are deregulated in tumor samples compared to normal controls. The top panel shows
the normalized average expression of each cluster in Bladder carcinoma and normal samples.

Figure S16. Discovering putative cis-regulatory elements driving bladder cancer deregulation. We used
FIRE to identify putative DNA/RNA motifs whose downstream/upstream genes show significant deregulation in
the tumor samples compared to normal controls. The top panel shows the normalized average expression of each
cluster in Bladder carcinoma and normal samples.

Figure S17. The pathway-regulatory interaction map of bladder cancer. The discovered cis-regulatory
elements (Figure S16) are positively or negatively associated with the significantly informative pathways
(Figure S15).

Figure S18. iPAGE output for the bladder cancer dataset (continuous) using MSigDB c2 gene-sets.

Figure S19. The pathway-regulatory interaction map of bladder cancer using the MSigDB gene sets. The
gene-sets discovered in Figure S18 are associated with cis-regulatory elements in Figure 2A (main text).

Figure S20. Correlation matrix calculated from our cancer pathway map. All the cancer samples are
clustered based on their deregulations across different pathways. Each element in this matrix represents a pair-
wise correlation value. On the right, the tree representing the hierarchical clustering is presented.

Figure S21. The complete cancer pathway map for MSigDB c2 gene-sets (without redundancy removal).

Figure S22. The discovered cis-regulatory elements in the cancer regulatory map are informative of gene
expression clusters in the NCI-60 dataset.

Figure S23. The discovered cis-regulatory elements are informative of gene expression clusters in the
human gene expression atlas.

Figure S24. FIRE analysis of experimentally tested associations. (A) The motifs that are most informative of
the decoy AAAA[ATG]TT vs scrambled microarray experiment. (B) Knocking down Elkl results in the

upregulation of genes harboring Spl, Elkl and MEF-2 binding sites. (C) Knocking down NFYA results in
upregulation of genes harboring the NF-Y binding site.

Table S1. The number of pathways discovered by iPAGE in 3 datasets studied in the main text in comparison with
the number of pathways obtained from the same but randomly shuffled datasets.

Table S2. The list, tissue and references of the cancer gene expression studies used to compile our initial dataset.

Table S3. A list of predictions based on the associations in the Cancer Pathway-Regulatory Interaction Map.
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Bladder Carcinoma Cancer Regulatory Motifs
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Supplemental Table

Table S1

Real Data

Random Data I

Random Data II

BL vs DLBCL
Bladder Carcinoma (cont)
Bladder Carcinoma (disc)

525
224
248

1
4
1

1
5
1
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Table S2

Tissue Sample Name Sample
Bladder CA Bladder Dyrskjot et al Carcinoma (Dyrskjot et al., 2004)
GBM Brain Liang et al Glioblastoma Multiforme (Liang et al., 2005)
OD Brain Bredel et al Oligodendroglioma (Bredel et al., 2005)
GL Brain Bredel et al Glioblastoma (Bredel et al., 2005)
Brain AO Brain Bredel et al Anaplastic Oligoastrocytoma (Bredel et al., 2005)
GL Brain Rickman et al Glioma (Rickman et al., 2001)
ODGL Brain Sun et al Oligodendroglioma (Sun et al., 2000)
AC Brain Sun et al Astrocytoma (Sun et al., 2006)
GLB Brain Sun et al Glioblastoma (Sun et al., 2000)
CA Breast Sotlie et al Carcinoma (Sotlie et al., 2001)
CA Breast Richardson et al Carcinoma (Richardson et al., 2006)
Breast MCA Breast Radvanyi et al Metastatic Breast Carcinoma (Radvanyi et al., 2005)
ILC Breast Radvanyi et al Invasive Lobular Carcinoma (Radvanyi et al., 2005)
IDC Breast Radvanyi et al Invasive Ductal Carcinoma (Radvanyi et al., 2005)
Colon CA Colon Graudens et al Carcinoma (Graudens et al., 2006)
Head-neck HSCC Head-Neck Cromer etal ~ Head-Neck Squamous Cell Carcinoma(Cromer et al., 2004)
HSCC Head-Neck Chung et al Head-Neck Squamous Cell Carcinoma (Chung et al., 2004)
Leukemia B-CLL Leukemia Haslinger etal ~ Chronic Lymphocytic Leukemia (Haslinger et al., 2004)
AD Lung Beer et al Adenocarcinoma (Beer et al., 2002)
AD Lung Bhattachatjee et al Adenocarcinoma (Bhattachatjee et al., 2001)
Lung COID Lung Bhattacharjee et al Carcinoid (Bhattacharjee et al., 2001)
SQ Lung Bhattacharjee et al Squamous Cell Lung Carcinoma (Bhattacharjee et al., 2001)
SMCL Lung Bhattacharjee et al Small Cell Lung Cancer (Bhattacharjee et al., 2001)
AD Lung Stearman et al Adenocarcinoma (Stearman et al., 2005)
FL Lymphoma Alizadeh et al Follicular Lymphoma (Alizadeh et al., 2000)
Lymphoma DLBCL Lymphoma Alizadeh et al Diffuse Large B-Cell Lymphoma (Alizadeh et al., 2000)
CLL Lymphoma Alizadeh et al Chronic Lymphocytic Leukemia (Alizadeh et al., 2000)
M ML Melanoma Talantov et al Cutaneous melanoma (Hoek et al., 2000)
elanoma
ME Melanoma Hoek et al Melanoma (Talantov et al., 2005)
Mesothelioma MPM Mesothelioma Gordon et al Malignant Mesothelioma (Gordon et al., 2005)
Myeloma MM Myeloma Zhan et al Multiple Myeloma (Zhan et al., 2002)
AD Ovarian Welsh et al Adenocarcinoma (Welsh et al., 2001)
CCC Ovarian Hendrix et al Clear Cell Carcinoma (Hendrix et al., 2006)
Ovarian MUC Ovarian Hendrix et al Mucinous Adenocatcinoma (Hendrix et al., 20006)
SRS Ovarian Hendrix et al Serous Adenocarcinoma (Hendrix et al., 2000)
END Ovarian Hendrix et al Endometrioid Adenocarcinoma (Hendrix et al., 2006)
Pancreas PDC Pancreas Ishikawa et al Pancreatic Ductal Carcinoma (Ishikawa et al., 2005)
AD Pancreas Logsdon et al Adenocarcinoma (Logsdon et al., 2003)
MPC Prostate Dhanasckaran et al Metastatic Prostate Cancer (Dhanasekaran et al., 2001)
Prostate PPC Prostate Dhanasekaran et al ~ Primary Prostate Cancer (Dhanasckaran et al., 2001)
BPH Prostate Dhanasekaran et al Benign Prostatic Hyperplasia (Dhanasekaran et al., 2001)
TU Prostate Lapointe et al Primary Tumor (Lapointe et al., 2004)
CA Renal Higgins et al Carcinoma (Higgins et al., 2003)
Renal RCCC Renal Boer et al Clear Cell Renal Cell Carcinoma (Boer et al., 2001)
RCCC Renal Lenburg et al Clear Cell Renal Cell Carcinoma (Lenburg et al., 2003)
Seminoma GCT Seminoma Korkola et al Germ Cell Tumor (Korkola et al., 20006)
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Table S3

GO terms

Significance

chromatin assembly

DNA packaging

chromosome organization and biogenesis
ribonucleoprotein complex

DNA packaging

DNA repair

mRNA processing

cell-cell adhesion

cell-cell adhesion

ubiquitin-protein ligase activity
protein-tyrosine kinase activity
Golgi vesicle transport

cytoskeletal protein binding

GPI anchor binding

DNA repair

humoral immune response
phosphoinositide-mediated signaling
mitotic cell cycle

mitosis

response to wounding

response to wounding

cell-cell adhesion

mRNA metabolic process

small GTPase mediated signal transduction

Whnt receptor signaling pathway

50 = laaanll.

5 gi cé
2

> =

p<le86.7
p<le325
p<ledlld
p<le87
p<le84
p<le’7.]
p<les
p<le69
p<leb6.J
p<leb64
p<le63
p<le63
p<le62
p<le62
p<leb6
p<le-6
p<le6
p<leb9
p<les5
p<leb4
p<les3
p<lebs2
p<lesl
p<leb

p<le4s8
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