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Antibiotics and the post-genome revolution
Sasan Amini and Saeed Tavazoie
The emergence of pathogenic bacteria resistant to multiple

antimicrobial agents is turning into a major crisis in human and

veterinary medicine. This necessitates a serious re-evaluation

of our approaches toward antibacterial drug discovery and use.

Concurrent advances in genomics including whole-genome

sequencing, genotyping, and gene expression profiling have

the potential to transform our basic understanding of

antimicrobial pathways and lead to the discovery of novel

targets and therapeutics.
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Introduction
The golden era of antibiotic discovery was from the 1940s

to the late 1960s, where many diverse classes of antibiotics

were discovered [1]. Development of second-generation,

third-generation, and fourth-generation antibiotics further

improved upon the activity and efficacy of existing com-

pounds [2��,3]. The success of that diverse arsenal to

combat infectious diseases made many pharmaceutical

companies abandon their antibiotic development programs

[2��]. With the emergence of multi-drug resistant patho-

gens, antibiotic discovery efforts were reinitiated and

surged, but there was a long gap until drugs like linezolid

and daptomycin [2��,4��,5] with novel modes of action

were approved. However, just a few years past their intro-

duction into the market, clinical strains resistant to those

antibiotics were reported [6,7,8]. These observations imply

that the traditional approach of antibiotic discovery, though

highly successful in the introduction of numerous drugs,

cannot sustain the high demand for development of novel

compounds [9]. Therefore, a more efficient antibiotic

discovery platform is essential for allowing us to compete

with the evolution of microbial resistance [10]. In the post-

genomic era, with the availability of various genomics-
www.sciencedirect.com 
based platforms including whole-genome sequencing,

genotyping, and gene expression profiling, a new horizon

opens that could revolutionize our pursuit of novel

antimicrobial agents. In this review we will briefly discuss

how genomics has transformed our understanding of anti-

biotics and impacted our approach toward antibacterial

drug discovery.

Identification and validation of novel targets
Most commonly used antibiotics only target a limited

number of crucial biological processes, including DNA

replication, protein translation, and cell wall biosynthesis

[11]. Genomics provides the tools for rapid identification

of new classes of biological processes, which will be

alternative targets for novel antimicrobial agents.

Identifying essential proteins and pathways, not present

in the host

Identification of essential genes has been one of the

primary contributions of genomics to antibiotic target

discovery [12]. Strategies like transposon mutagenesis

or allelic replacement, all relying on the genome

sequence of the desired microorganism, were widely used

for constructing recombinant strains and mapping

putative essential genes in sequenced pathogens [4��].
Those efforts were later replaced by comparative geno-

mics approaches that searched for broadly conserved

genes among the desired bacterial spectrum, which are

either absent or evolutionary distant in eukaryotes

[12,13]. As a case in point fatty acid biosynthetic genes,

more specifically fabI, have been identified as putative

drug targets based on their conservation among Staphy-
lococcus aureus, Streptococcus pneumoniae, and Haemophilus
influenza species [14]. Purified FabI protein was then

screened against a compound library by GlaxoSmithKline

(GSK), which led to the identification of AFN-1252 as a

specific inhibitor [15�]. Other examples of genomics-

derived targets are polypeptide deformylasese [16,17],

aminoacyl-tRNA synthetases [15�,16,18] and components

of the NAD(P) biosynthetic pathway [19].

Identifying virulence genes

Virulence factors and other genes that are expressed in
vivo during the course of an infection are potential

therapeutic targets since they are directly associated with

either the disease or adaptation to host. Traditionally,

signature tagged mutagenesis (STM), which recognizes

mutants that survive and proliferate better in the host,

and in vivo expression technology (IVET), which ident-

ifies genes that are induced during an infection, were used

for assessing genes associated with the infection phase

[20]. Microarrays and more recently transcriptome
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sequencing (mRNA-seq) have significantly increased the

throughput and sensitivity of the IVET technology [21].

Similarly, next-generation sequencing has extensively

enhanced the resolution and capacity of the STM work-

flow [22].

Optimizing antibiotic biosynthesis
Optimizing the efficiency of antibiotic biosynthetic pro-

cesses that are fully or partially synthesized by a micro-

organism is crucial for cost-effective large-scale

production of the drug. This can be facilitated in different

ways via genomics-associated technologies.

Dissecting the metabolic network of the natural

producer

Whole-genome sequencing followed by functional anno-

tation of the putative ORFs of any antibiotic-producing

strain can help construct the in silico metabolic network of

that strain which allows drug production optimization.

This can be achieved by enhancing the flux of the desired

pathways or removing any competitive biochemical path-

ways in the host [23].

Finding hosts for heterologous expression of secondary

metabolites

Efficiency of engineered or naturally occurring antibiotic

biosynthetic pathways can be enhanced by choosing a

host that tolerates higher concentrations of the secondary

metabolite or has a metabolic network engineered to be

compatible with the biosynthesis of the desired com-

pound. Availability of the genome sequences of a diverse

spectrum of microorganisms facilitates identification of

the ideal host. A genomics-driven engineering of micro-

organisms toward making reduced genome hosts for

heterologous gene cluster expression can also enhance

the production yield [24,25,26].

Understanding antibiotics mode of action and
emergence of antibiotic resistance
Many antimicrobial agents are discovered via phenotypic

screening based on growth-inhibitory effect of a com-

pound identified by screening large libraries [15�]. Many

of these identified compounds have no known mechan-

ism of action. There are also other antimicrobial agents

that have a proposed mode of action, but may have other

activities of equal or greater importance [27]. There are

several genomics-based platforms that could elucidate

antibiotics mechanism of action.

Transcriptome profiling of response to antibiotics

Introduction of any antibiotic to a sensitive microorgan-

ism perturbs a number of biological processes that is

reflected to some extent at the gene expression level.

Therefore, comparative transcriptome profiling in the

presence and absence of any given antibiotic can identify

genes that show differential expression upon exposure to

the drug. For example, gene expression microarrays elu-
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cidated that different classes of bactericidal antibiotics

kill cells by inducing a common oxidative damage path-

way [28]. A more recent example is a microarray-based

transcription profiling of S. aureus challenged with dap-

tomycin, a drug recently approved for treatment of gram-

positive bacterial infections, which suggested inhibition

of peptidoglycan biosynthesis and membrane depolariz-

ation are two major modes of action for the drug [29].

Mapping adaptive mutations

Upon exposure to antimicrobial agents, most bacteria

efficiently accumulate adaptive mutations owing to their

short generation time [30]. Identity of these mutations, if

not associated with efflux pumps or other generic cellular

stress responses, could help identify the antibiotic targets

or its mechanism of action [27]. Whole-genome sequen-

cing combined with methods that can discriminate adap-

tive from neutral mutations [31] can provide an accurate

genetic map of the mutations responsible for the emerged

resistance phenotype.

Functional genomics and high throughput profiling of

complex bacterial populations

Microarray-based or sequencing-based high-throughput

genetic footprinting of complex bacterial populations has

turned into a powerful platform for dissecting the genetic

basis of different bacterial behaviors [32–34]. A diverse

transposon-mutagenized library of a microorganism can

be challenged with an antibiotic and the abundance of all

mutants in the enriched population can be quantified on

microarrays or by sequencing, reflecting the contribution

of each locus in the genome to the observed phenotype.

This has been done for a wide range of drugs in E. coli,
successfully identifying both known and novel loci con-

tributing to antibiotic resistance [35].

Tracking population-wide resistance

Recently, population-level antibiotic resistance behaviors

mediated by signaling molecules have been observed in

bacteria. In a continuous culture of E. coli evolved in

increasing levels of norfloxacin, a small number of highly

resistant mutants produced indole at a fitness cost to

them. The more sensitive members of the population

then sensed the indole and increased production of efflux

pumps and oxidative-stress protections, increasing their

resistance beyond that exhibited in a homogeneous popu-

lation [36��]. Deep sequencing of heterogeneous bacterial

samples can identify even rare mutations in the highly

resistant and more sensitive subpopulations that are driv-

ing these population-level behaviors.

Theragnostics and personalized treatment
Theragnostics combines therapeutics with diagnostics to

come up with a treatment strategy for individual patients.

A diagnostic test is conducted to identify whether any

given patient is more likely to be helped or harmed by a

medication and suggests targeted drug therapy based on
www.sciencedirect.com



Post-genome revolution Amini and Tavazoie 515
the results [37]. Genomics, in the theragnostics setting,

can help rapidly genotype patients and pathogens isolated

from them and use that information to pick the most

effective therapy or potentially identify risks and side

effects associated with a given therapy regime [37].

Looking for genetic determinants of antibiotic

resistance at the individual level

The success of the widely used triple combination

therapy based on a proton pump inhibitor (PPI), amox-

icillin (AMPC), and clarithromycin (CAM) against Heli-
cobacter pylori is known to be associated with cytochrome

P450 2C19 (CYP2C19) enzyme activity among patients

[38] and presence of CAM resistance mutation (usually in

the 23S rRNA gene) in the pathogen [39]. By genotyping

the patients and bacteria, the efficacy of the candidate

antibiotic can be predicted [38] and when necessary,

appropriate alternatives can be sought.

Profiling drug targets

Triclosan is a commonly used antimicrobial agent that

acts by inhibiting FabI or enoyl-ACP reductase, an
Figure 1
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enzyme involved in fatty acid biosynthesis. However,

many pathogens including S. pneumoniae do not possess

FabI, but instead have an alternative isozyme, FabK, that

is resistant to triclosan [40]. Other pathogens like Pseu-
domonas aeruginosa encode two isozymes, one of which

(FabK) is non-responsive to triclosan [41]. Using geno-

mics, the clinical samples isolated from a patient can be

analyzed by a quick genotyping assay that screens for the

presence of the drug target and absence of redundant

isoforms that are drug-resistant.

Better understanding of pathogenesis
Genomics can facilitate the study of the pathogenesis

phenomenon, which would set the stage for development

of new therapeutics and expand our knowledge of cur-

rently used antimicrobial agents.

Directly working with pathogens

There is considerable genetic diversity among different

bacterial species and different strains of the same species.

The affordable cost of DNA sequencing allows direct

whole-genome sequencing of any culturable pathogen
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isolated from a patient, providing a precise genetic profile

of that pathogen in the context of its associated disease.

For example, whole-genome sequencing has been

applied to identify resistance mutations that emerge in

the nosocomial pathogen, Acinetobacter baumannii upon

antibiotic therapy in vivo [42].

Pathogenic versus non-pathogenic strains

Many bacterial genera including Listeria contain both

pathogenic and non-pathogenic species. Comparative

genomics allows identification of homologous virulence

gene clusters such as prfA [43], which could be potential

drug targets. It would also provide some insight into the

evolution of the pathogen and its pathogenic traits [43]

with potential therapeutic applications [19].

Metagenomics and antibiotics
With the rapid evolution of high-throughput sequencing

platforms, highly complex environmental (i.e. metage-

nomics) samples can be directly analyzed, circumventing

the need for culturing the samples [44]. Metagenomic

studies of bacterial communities have also the potential of

providing a wealth of insights into antibiotic utilization in

the native ecological context.

Studying the effect of antibiotics on microbiota

Antibiotic usage can disrupt the body’s natural micro-

biota, which could have adverse health consequences, a

phenomenon that in some cases can be addressed

directly using the genomics platforms. An illustrative

example arises from deep sequencing of the metage-

nomic samples isolated from the distal gut of three

healthy individuals before and after ciprofloxacin treat-

ment, which showed dramatic changes in the diversity

and distribution of the microbial community upon treat-

ment [45�]. The same platform can be used to compare

the diversity of bacterial communities pre-antibiotic and

post-antibiotic exposure during infections. A metage-

nomics study of a mouse model of Enterococcus infection

surprisingly suggested  that antibiotic treatment set the

stage for the pathogen to dominate the intestinal micro-

biota [46].

Dissecting interspecies interactions

Interspecies interactions can influence many physiologi-

cal aspects of microbial communities including their

response to antibiotics. Whole genome sequencing pro-

vided a good example for horizontal transfer of a methi-

cillin-resistant gene cassette from Staphylococcus
epidermidis to S. aureus in a patient [47].

Identifying novel antibiotic biosynthetic gene clusters

from un-culturable samples

Using metagenomics, secondary metabolites produced by

un-culturable members of natural bacterial populations

can be explored and cloned in heterologous hosts and

assayed for antimicrobial activity. When this approach
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was applied to screen soil DNA libraries for variant

glycopeptide antibiotics, two novel biosynthetic gene

clusters were found [48].

Conclusions
The contribution of genomics to our knowledge of anti-

biotics will expand owing to the dropping cost of next-

generation sequencing technologies. This will have a

multi-dimensional impact on various aspects of the anti-

biotic development field, including but not limited to

new drug target identification, understanding the mech-

anism of antibiotic action, drug safety and efficacy assess-

ment, bacterial resistance development, understanding

the pathogenesis process, optimizing antibiotic biosyn-

thetic process, and devising personalized treatments for

specific instances of infectious disease (Figure 1). This

combination will be a valuable asset in our endless battle

against drug resistant bacterial infections.
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