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SUMMARY

The discovery of pathways and regulatory networks
whose perturbation contributes to neoplastic trans-
formation remains a fundamental challenge for
cancer biology. We show that such pathway pertur-
bations, and the cis-regulatory elements through
which they operate, can be efficiently extracted
from global gene expression profiles. Our approach
utilizes information-theoretic analysis of expression
levels, pathways, and genomic sequences. Analysis
across a diverse set of human cancers reveals the
majority of previously known cancer pathways.
Through de novo motif discovery we associate these
pathways with transcription-factor binding sites and
miRNA targets, including those of E2F, NF-Y, p53,
and let-7. Follow-up experiments confirmed that
these predictions correspond to functional in vivo
regulatory interactions. Strikingly, the majority of
the perturbations, associated with putative cis-regu-
latory elements, fall outside of known cancer path-
ways. Our study provides a systems-level dissection
of regulatory perturbations in cancer—an essential
component of a rational strategy for therapeutic
intervention and drug-target discovery.

INTRODUCTION

Precise molecular definition of pathologic states is an essential

component of a rational approach to understanding and treating

disease. This is especially true in cancer, where many complex

cellular pathways contribute to the initiation and maintenance

of the transformation process. Throughout the last decade,

microarrays have been widely used for discovering significantly

deregulated genes in the tumor samples in order to identify diag-

nostically and prognostically relevant ‘‘molecular signatures’’

(Rhodes et al., 2004). However, it is becoming increasingly clear

that tumor-state heterogeneity can often be more accurately

described by the behavior of functionally coherent and coordi-

nately regulated sets of genes. Thus, molecular signatures are

moving toward pathway-level definitions (Segal et al., 2004;
900 Molecular Cell 36, 900–911, December 11, 2009 ª2009 Elsevier
Subramanian et al., 2005). In fact, neoplastic transformation

relies on deregulation of diverse oncogenic and tumor-

suppressor pathways (Watters and Roberts, 2006), including

stimulation of cell growth and proliferation and inhibition of

cell-cycle arrest and apoptosis (Adjei and Hidalgo, 2005). Global

deregulation of these pathways is typically achieved through

somatic mutations in key signaling molecules (e.g., Imai et al.,

1998), transcription factors (e.g., Gallie, 1994), and posttran-

scriptional regulators such as microRNAs (e.g., Tavazoie et al.,

2008; Wu et al., 2008). Systematic identification of these deregu-

lated pathways and their underlying mutations is a crucial first

step in developing a rational strategy for cancer therapy.

In this study, we use an integrated framework to systematically

determine deregulated pathways in cancer and identify the tran-

scription factors and other regulators that orchestrate these

changes (Figure 1). Our methodology is based on the concept

of mutual information (MI) (Cover and Thomas, 2006), which

provides a general method to detect dependencies between

observations, including nonlinear correlations and correlations

involving continuous (e.g., expression fold changes) and discrete

observations (e.g., expression clusters). Our approach consists

of the following steps: first, we identify which known pathways

and cellular processes are deregulated in cancer gene expres-

sion data sets. This step is based on an information-theoretic

pathway analysis called iPAGE, which directly quantifies the MI

between pathways and expression profiles (see Figure S1A

and the Supplemental Experimental Procedures, available on-

line). Then we identify promoter and 30UTR cis-regulatory

elements that best explain gene expression in the same data

sets. This is achieved using FIRE, a robust and general informa-

tion-theoretic framework for cis-regulatory elements discovery

from gene expression data (Elemento et al., 2007). The regula-

tors responsible for the observed expression changes are then

identified by comparing these uncovered regulatory elements

to transcription factor binding sites in JASPAR (Sandelin et al.,

2004) and TRANSFAC (Matys et al., 2006) and to seed regions

of known miRNAs (Griffiths-Jones et al., 2008). Finally, in the

last step, we associate the regulatory elements uncovered by

FIRE with the deregulated pathways identified by iPAGE. This

latter analysis essentially reveals the pathways that are regulated

through the discovered putative binding sites by their associated

regulatory proteins or RNAs (see Figure S1B and the Supple-

mental Experimental Procedures).
Inc.
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When applied to a large number of cancer gene expression

data sets, this data-integrative approach successfully recapitu-

lated the role of many known transcription factors and miRNAs

in cancer. This comprehensive analysis of cancer gene expres-

sion represents a crucial first step toward achieving a systems-

level understanding of regulatory perturbations in cancer. Our

discovery of a large repertoire of significant cis-regulatory

elements, many of which are 30UTR motifs, and their associa-

tions with key cellular pathways highlight our limited current

understanding of cancer pathway perturbations.

RESULTS

Discovering Deregulated Pathways: Description
of Framework and Application to Bladder Cancer
We have created an integrated framework to systematically

determine deregulated pathways in cancer and identify the tran-

scription factors and other potential regulators that orchestrate

these changes (Figure 1). In what follows, we describe the appli-

cation of this approach to urinary bladder cancer, the fifth most

common malignancy in the United States. Using published

genome-wide expression profiles of bladder cancer (Dyrskjot

et al., 2004) with 41 tumor samples (and nine normal bladder

samples for comparison), we sought to discover the pathways

that show significant differential expression in tumor samples

compared to their normal controls.

Several methods have been developed to perform this type

of analysis, e.g., T-profiler (Boorsma et al., 2005) and GSEA

(Subramanian et al., 2005). While undoubtedly powerful, these
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Figure 1. Revealing Local Regulatory

Networks from Gene Expression Data

Perturbed pathways and informative cis-regulatory

elements are inferred from cancer-related global

gene expression profiles. The discovered path-

ways are then associated with local DNA and

RNA elements in order to reconstruct the under-

lying regulatory networks (see also Figure S1).

methods are restricted to continuous

gene expression variables, such as fold

changes between cancer and normal

samples. More discrete or categorical

expression observations, such as coex-

pression clusters, cannot be used as

inputs. This is an important limitation,

since using coexpression clusters can

significantly improve the signal-to-noise

ratio, by taking into account gene expres-

sion behavior across different conditions

and/or perturbations.

We have developed a principled

approach for discovering deregulated

pathways from gene expression mea-

surements without the data-type limita-

tion described above. Our framework

(called iPAGE) uses the concept of mutual

information (MI) (Cover and Thomas,

2006) to directly quantify the dependency between expression

and known pathways in the Gene Ontology (Ashburner et al.,

2000) or in MSigDB (Subramanian et al., 2005). Nonparametric

statistical tests are then used to determine whether a pathway

is significantly informative about the observed expression

measurements. When used on coexpression clusters, enrich-

ment and depletion of pathway components across all clusters

contribute to the MI; this in turn increases the overall sensitivity

and specificity of our approach (see the Supplemental Experi-

mental Procedures). iPAGE possesses additional advantages

over other pathway analysis methods: it can detect nonmono-

tonic pathway association patterns (e.g., pathways with both

upregulated and downregulated components); it also incorpo-

rates a procedure based on the conditional MI (Cover and

Thomas, 2006) to only return pathways that are independently

informative about the expression data being analyzed (Supple-

mental Experimental Procedures).

As a first step in the analysis of bladder cancer, we determined

the extent to which each gene is differentially expressed

between tumors and normal bladders (for details see the Supple-

mental Experimental Procedures). We then used iPAGE to

search for the pathways (‘‘Biological processes’’ categories in

the Gene Ontology annotations) that are most informative about

the observed gene expression differences. As shown in

Figure 2A, we found 16 nonredundant pathways with significant

deregulation as indicated by the nonrandom distribution of their

components across the spectrum of cancer versus normal

expression differences (partitioned into discrete ‘‘expression

bins,’’ i.e., contiguous equally populated expression intervals,
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Figure 2. Pathway and Regulatory Perturba-

tions in Bladder Cancer

(A) Shown are the informative pathways discovered

by iPAGE and their patterns of overrepresentation

across the cancer versus normal expression differ-

ences. These differences are partitioned into

discrete expression bins. Each expression bin

includes genes within a specific range of expres-

sion values (shown in the top panel). Bins to the

left contain genes with lower expression in cancer

samples, whereas the ones to the right contain

genes with higher expression. In the heat map

representation, rows correspond to pathways and

columns to consecutive expression bins. Red

entries indicate enrichment of pathway genes in

a given expression bin. Enrichment and depletion

are measured using hypergeometric p values

(log-transformed) as described in the Supple-

mental Experimental Procedures.

(B) Shown are the overrepresentation patterns of

the putative cis-regulatory elements discovered

by FIRE across the spectrum of cancer versus

normal expression differences. In this heat map,

rows correspond to the discovered motifs and

columns to expression bins (see also Figures S2A

and S2B). Yellow entries in the heat map indicate

motif overrepresentation (measured by negative

log-transformed hypergeometric p values), while

blue entries indicate underrepresentation (log-

transformed p values).

(C) The resulting pathway-regulatory interaction

map showing the putative associations between

regulatory elements and pathways. Rows corre-

spond to informative iPAGE pathways and

columns to informative FIRE motifs. Red entries in

this heat map correspond to a positive association where the genes belonging to a pathway are also enriched in a given motif (measured using log-transformed

hypergeometric p values). Blue entries correspond to significant motif depletions in the upstream sequences (or 30UTRs) of genes in a given pathway (see also

Figure S2C).
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as described in the Supplemental Experimental Procedures).

These 16 pathways include the upregulated ‘‘mitosis,’’ ‘‘DNA

replication,’’ and ‘‘oxidative phosphorylation’’ pathways, which

can be explained by the high cell proliferation rate in bladder

tumors and the elevated metabolic activity required to sustain

it (Arora and Pedersen, 1988; Dyrskjot et al., 2004). The iPAGE

analysis also showed that the ‘‘lymphocyte activation,’’ ‘‘immune

response,’’ and ‘‘cell adhesion’’ pathways are significantly

downregulated. This may indicate suppression of the immune

response in these tumors—which can reportedly be overcome

by IL2 treatment (Velotti et al., 1991)—in addition to a higher

probability of metastasis due to deregulation in cell-adhesion

components (Cooper and Pienta, 2000).

In the next step, we applied FIRE to identify the cis-regulatory

elements that are informative about the same bladder cancer

expression changes (Elemento et al., 2007). We identified 16

upstream sequence motifs (including known binding sites for

E2F, Elk-1, AhR, SEF-1, and E47) and a single 30UTR element

(Figure 2B). Approximately two-thirds of these motifs are associ-

ated with genes that are upregulated in the tumor state, whereas

the remaining third are enriched in downregulated genes. Our

analysis suggests that the Elk-1 transcription factor, a member

of the ETS family of ternary complex factors (TCFs) and a target

of the MAP kinase pathway, plays a central role in bladder
902 Molecular Cell 36, 900–911, December 11, 2009 ª2009 Elsevier
cancer. We discovered that many Elk-1 and E2F motifs co-occur

within the same promoters (Figure S2A) and that genes with both

motifs in their promoters are more likely to be upregulated in

bladder cancer (73%) than genes with either motif considered

alone (62% and 65%, respectively). The UNGNUGU element,

a 30UTR motif, shows a pattern of occurrence similar to that of

the Elk-1 motif (Figure 2B). This motif does not match any of

the known miRNA target sites; it may be targeted by an unchar-

acterized miRNA or by an RNA-binding regulatory protein.

Our observation that genes associated with this motif and the

Elk-1 motif are more coexpressed than genes associated with

each motif considered alone (Figure S2B) suggests a functional

cooperation between the factor that binds to this RNA motif

and Elk-1.

In the last step of our analysis, we evaluate whether the inde-

pendently discovered pathways and cis-regulatory sequences

are mutually informative of each other. This analysis enables us

to associate regulators with their target genes and to reconstruct

the local regulatory networks responsible for cancer-related

deregulation. In a heat map built from the resulting information

values (Figure 2C; we call this representation pathway-regula-

tory interaction map), we observed that Elk-1 binding sites

are positively associated with several upregulated pathways,

namely mitosis, DNA replication, ‘‘RNA splicing,’’ ‘‘ribosome
Inc.
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biogenesis,’’ and ‘‘protein degradation,’’ and negatively associ-

ated with several downregulated ones (e.g., lymphocyte activa-

tion and cell adhesion). The significant depletion of Elk-1

elements from these specific pathways may reflect selective

pressure for avoidance of regulatory crosstalk (Elemento et al.,

2007). We also observed a significant anticorrelation between

the gene expression level of Elk1 and its target genes in mitosis,

RNA splicing, and ribosome biogenesis (see Figure S2C). The

binding site for E2F also showed a significant association with

DNA replication and mitosis (Figure 2C). Indeed, E2F is a known

regulator of DNA replication and mitotic events (Ishida et al.,

2001). In bladder carcinoma, the expression of TFDP1, an E2F

dimerization partner (Chan et al., 2002), shows a significant

correlation with the expression of E2F target genes in mitosis,

DNA replication, and ‘‘microtubule biogenesis’’ (see Figure S2C).

We also predicted a potential association between AhR tran-

scription factor and ‘‘ubiquitin-dependent protein degradation.’’

As shown in Figure S2C, this transcription factor has a lower

expression in normal samples, and its expression profile is highly

correlated with expression profiles of genes involved in protein

catabolism (GO:0006511). Prior evidence for this regulation

also exists in the literature: in breast cancer cells, it has been

shown that AhR downregulates estrogen receptor a through

activation of the proteasome complex (Wormke et al., 2000).

Our analysis of bladder cancer microarray expression data

recapitulates many previously known signaling pathway pertur-

bations. In the case of E2F and Elk-1 (whose binding sites we

identified above), we speculate that mutations in their upstream

signaling proteins (e.g., Rb and Erk2, respectively) result in

aberrant activities of these transcription factors, which in turn

translate into increased cell proliferation. Strikingly, half the

regulatory elements uncovered by FIRE do not correspond to

known transcription factor binding or miRNA-targeting sites

but nonetheless are highly informative of regulatory perturba-

tions in this data set. The pathway-regulatory interaction map

(Figure 2C) is a powerful starting point for exploring the biological

role of these elements and their connections to known pathways.

Comparative Analysis of Cancer Subtypes,
BL versus DLBCL
In this section, we demonstrate that our approach can be used to

discover deregulated pathways and regulatory networks that

distinguish cancer subtypes. We applied this methodology to

Burkitt’s lymphoma (BL) and diffuse large B cell lymphoma

(DLBCL), two types of lymphoma that are phenotypically similar

but require very different treatment regimens (Frost et al., 2004).

We applied iPAGE and FIRE to a microarray analysis of 36 BL

and 166 DLBCL samples (Hummel et al., 2006). Based on their

expression values across all the samples, we grouped the genes

into 110 coexpression clusters (using the k-means clustering

algorithm) with each gene uniquely assigned to an index repre-

senting a distinct cluster. In contrast with the continuous method

used for the bladder cancer data set, this clustering process

increases the sensitivity of our approach by capturing the intra-

cancer gene expression heterogeneity, which is usually veiled

when averaging expression values across multiple samples of

the same tumor type. In this data set, iPAGE discovered 51

significantly informative and nonredundant pathways. The repre-
Mole
sentative pathways that are associated with the clusters

showing differential average expression between BL and DLBCL

samples are shown in Figure 3A.

Our analysis reveals that several cell-cycle-related pathways

and processes (e.g., ‘‘mitotic cell cycle’’ and DNA replication)

are overrepresented in coexpression clusters 6 and 17, whose

genes show a higher expression level in BL samples (Figure 3A).

Along with cell-cycle-related genes, protein metabolismpathways

such as ‘‘protein catabolic process’’ are also identified as highly

informative.Thesearemostlyassociatedwithcluster109,acluster

of genes with higher expression in BL samples. Moreover,

a number ofpathways related to immune response, e.g., ‘‘cytokine

receptor activity’’ and ‘‘antigen processing,’’ are also significantly

deregulated (Figure 3A). These pathways are generally associated

with clusters showing lower expression in BL compared to DLBCL

(e.g., cluster 8 for antigen processing and cluster 39 for cytokine

receptor activity). The higher expression of lymphocyte-specific

pathways in DLBCL has been previously shown by employing

immunohistochemical analysis and revealed the overabundance

of B cell-activated markers (Gormley et al., 2005).

Application of FIRE to the same data set revealed a collection

of informative cis-regulatory elements (both 50 upstream motifs

and 30UTR elements), including many known transcription factor

binding sites, e.g., E2F, ELK4, NF-Y, NF-AT, MYB, and a micro-

RNA target site for let-7 (see Figure 3B). The let-7 miRNA, whose

target genes show significant upregulation in BL samples, is

a known regulator of cell proliferation, and let-7 mutations have

been observed in human lung cancers (Johnson et al., 2007).

As shown in the pathway-regulatory interaction map, genes

with a NF-Y-binding site are significantly associated with mitotic

cell cycle (Figure 3C). NF-Y can activate G1-S cyclins and

promote tumorigenesis through cyclin B2 overexpression (Park

et al., 2007). The FIRE analysis indicated a strong co-occurrence

and colocalization of NF-Y- and Sp1-binding sites in cluster 17

(Figure 4A). Cluster 17 genes were highly upregulated in BL

samples (two-tailed t test, p < 10�10). By comparison, genes in

cluster 75 (enriched only in Sp1 motif) and cluster 47 (enriched

only in NF-Y motif) show negligible differential expression

between BL and DLBCL samples (t test p value of 0.5 and 0.3,

respectively; Figure 4B); these results suggest a functional inter-

action between NF-Y and Sp1. One of the shared targets of these

two transcription factors with known overexpression in BL is

A-myb (Facchinetti et al., 2000), whose binding site (TAACNG

reported here as v-Myb) is also captured by FIRE (Figure 3B).

The observed correlation between NF-Y mRNA expression and

the expression levels of genes in cluster 17 (R = 0.73; t test

p < 1e-34) further supports the direct role of NF-Y in the regulation

of the genes in this cluster (Figure 4B and Figure S3).

The pathway-regulatory interaction map revealed many

known associations but also uncovered previously uncharacter-

ized ones (Figure 3C). For example, the detected association

between the AP-1 motif (TGANTCA) and the lymphocyte

activation and cytokine receptor activity pathways correctly

recapitulates the prominent role of AP-1 proteins in lymphomas

(Vasanwala et al., 2002) and their importance in leukocyte

activation and differentiation (Foletta et al., 1998). Figure 3C

also clearly highlights the known role of NF-AT in lymphocyte

activation (Fisher et al., 2006).
cular Cell 36, 900–911, December 11, 2009 ª2009 Elsevier Inc. 903
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Figure 3. Differential Pathway Perturbations between Burkitt’s Lymphoma and Diffuse Large B Cell Lymphoma

(A) Differentially expressed pathways uncovered by iPAGE and their pattern of overrepresentation across BL/DLBCL coexpression clusters. In this representa-

tion, columns represent coexpression clusters, while rows correspond to informative pathways. The top panel shows the normalized average expression of each

gene cluster in BL and DLBCL samples.

(B) A subset of putative cis-regulatory elements discovered by FIRE in BL versus DLBCL coexpression clusters.

(C) The pathway-regulatory interaction map reveals the association between the identified regulatory elements (and their cognate binding factors, when known)

and the pathways that are differentially expressed in BL versus DLBCL (see also Figure S3).
Moreover, our analysis in Figure 3C rediscovered the known

association between E2F and mitotic cell cycle and RNA poly-

merase activity (Ishida et al., 2001). Alongside the mitotic tran-

scription factors, we identified other regulators with potential

key roles in defining the biological differences between BL and

DLBCL. For example, our results indicate that the binding site

for the human X box binding protein-1 (XBP1), a transcription

factor that participates in the unfolded protein response (UPR)

(Calfon et al., 2002), is associated with ‘‘unfolded protein

binding.’’ The latter pathway shows a significant upregulation in

BL samples (Figures 3B and 3C). Although this association has

not been observed before in the context of BL, sustaining the acti-

vation of the UPR is important for tumor cells due to its cytopro-

tective action against cytotoxic conditions, e.g., hypoxia and

nutrient deprivation, that typically accompany the tumor state.

Global Analysis of Pathway Perturbations across
Cancers
Our success in revealing regulatory perturbations in cancer

versus normal samples as well as in cancer subtypes motivated
904 Molecular Cell 36, 900–911, December 11, 2009 ª2009 Elsevie
us to conduct a more comprehensive meta-analysis of perturba-

tions across diverse human cancers. Our goal was to identify

both generic and cancer-type specific deregulations and to

reveal the cis-regulatory sequences underlying these changes.

To this end, we compiled data from 46 microarray studies of

cancer versus normal tissues (see Table S1). In order to capture

intracancer variation within samples, we employed the same

preprocessing step as in the BL versus DLBCL analysis above;

we first clustered the genes based on their expression across

normal and tumor samples and then combined the clusters

with low average differences into a single ‘‘background’’ cluster

(see the Supplemental Experimental Procedures for details). We

then used iPAGE to find the pathways that best explain the re-

sulting coexpression clusters. We combined the results obtained

from all cancer data sets into a cancer pathway heat map. This

map also indicates whether these pathways tend to be up- or

downregulated in each cancer type (Figure 5).

As expected, our analysis reveals that multiple pathways

are deregulated in many cancers; some of these deregulated

pathways are well-known core cancer pathways, while others,
r Inc.
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to the best of our knowledge, have not been previously associ-

ated with the tumor state. As expected, our results show that

pathways responsible for growth and proliferation are consis-

tently upregulated in tumor samples as compared to normal

controls. This includes mitotic cell cycle, DNA replication, and

‘‘chromatin assembly’’ genes (Figure 5). Metabolic pathways

such as ‘‘glycolysis’’ and ‘‘organic compounds oxidation’’ are

also upregulated in many tumors (Arora and Pedersen, 1988);

on the other hand, stress responses that lead to cell-cycle arrest

such as ‘‘negative regulation of progression through cell cycle’’

are often downregulated. Among the signal transduction path-
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Figure 4. Cis-Regulatory Element Interac-

tions and Combinatorial Regulation

(A) The FIRE regulatory interaction matrix for the

cis-regulatory elements discovered in the BL

versus DLBCL data set (Figure 3B), and an accom-

panying motif map showing colocalization of Sp1

and NF-Y sites. In the FIRE interaction matrix,

lighter colors (white and yellow) correspond to

significant motif co-occurrences. ‘‘+’’ signs indi-

cate that two motifs tend to colocalize on the

DNA or RNA sequences. The NF-Y- and Sp1-

binding sites show a significant proximal co-occur-

rence and colocalization in the promoters of their

target genes. This colocalization is illustrated by a

FIRE motif map, which shows where these two

binding sites co-occur in the promoter sequences

of genes in cluster 17, in comparison with genes

randomly selected from clusters 75 and 47.

(B) The average expression profile of genes in coex-

pression cluster 17, across all BL and DLBCL

samples, shows a high correlation with NF-Y

mRNA expression. The average expression profiles

of thegenes in clusters75 and 47, although enriched

in Sp1 and NF-Y putative sites, respectively, are not

correlated with BL versus DLBCL classification.

ways, the expression of ‘‘NF-kB pathway’’

components is significantly increased in

many cancers, recapitulating the broad

oncogenic role of this signaling pathway.

Increased levels of NF-kB, a negative

regulator of apoptosis, have indeed been

reported in many solid and hematopoietic

primary tumors and tumor cell lines (see

Rayet and Gelinas, 1999, for review).

Our results also suggest an important

role for ion transport pathways in onco-

genesis and/or tumor maintenance. For

example, sodium and potassium trans-

port activities are deregulated in many

types of cancer (Figure 5). This is consis-

tent with previous reports that showed

active avoidance of sodium transport in

some tumors (e.g., Morgan et al., 1986).

We also observed a general increase in

the expression of the genes encoding

anion transporters (especially phosphate

transporters) in most of the tumor cells

compared to their corresponding normal samples. The cyto-

plasmic Pi concentration has been suggested to play a critical

role in metabolic control in animal cells; a measurable decline

in cytoplasmic Pi is accompanied by a decrease in glycolytic

or respiratory rates (Geck and Bereiter-Hahn, 1991). The degree

to which limited Pi uptake restricts glycolysis, respiration, or cell

growth in normal or malignant tissues has been studied exten-

sively (e.g., Wehrle and Pedersen, 1982).

Alongside broadly deregulated pathways, we also identified

informative pathways that are only associated with a single or

a small number of tumor types. For example, ‘‘TNF receptor
Molecular Cell 36, 900–911, December 11, 2009 ª2009 Elsevier Inc. 905
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binding’’ pathway is most prominent in serous ovarian cancer.

The molecular mechanisms of tumor survival in this cancer are

not well understood; however, a recent study has reported that

the overexpression of tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL) is correlated with prolonged survival in

advanced ovarian cancers (Lancaster et al., 2003). VEGF

receptor activity is another pathway that our analysis finds to

be upregulated primarily in renal cancers. Accordingly, inhibitors

of VEGF receptor have been widely considered as potential

treatment for this type of cancer (Duncan et al., 2008).

One of the main advantages of our analysis is that it does not

only detect deregulated cancer pathways but also reveals the

mechanisms by which the observed perturbations may come

about. In order to map regulatory networks onto these deregu-

lated pathways, we systematically searched for informative

cis-regulatory elements in each cancer gene expression data

set. Combining the resulting motifs into a nonredundant list,

we generated a ‘‘cancer regulatory map’’ in which the up- and

downregulation of the genes associated with each motif are

captured across all cancers (see Figures S4A and S4B). Subse-
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Figure 5. Cancer Pathway Map

Shown are the 58 nonredundant iPAGE-discov-

ered pathways with significant patterns of deregu-

lation across 46 cancer versus normal samples.

Each entry in this heat map represents the most

significant overrepresentation of a given pathway

across all nonbackground coexpression clusters

for a given cancer. Overrepresentation is mea-

sured using log-transformed hypergeometric p

values. The colors indicate whether the genes

in a given pathway are upregulated (red) or down-

regulated (green) in the tumor samples. The path-

ways discussed in the text are highlighted in

yellow.

quent assessment of the relationship

between the deregulated pathways and

informative motifs suggests potential

key roles for previously known regulatory

elements as well as for many previously

uncharacterized motifs (Figure S4C).

Figure 6, which shows a subset of these

relationships, indicates that our approach

successfully assigns p53 to ‘‘induction of

apoptosis’’ (Stiewe, 2007), Jun, Elk-1,

and E2F to mitotic cell cycle (Gurzov

et al., 2008; Ishida et al., 2001; Smith

et al., 2004) and HSF to ‘‘protein folding’’

(Mosser et al., 1993). We hypothesize that

the observed deregulations at the tran-

scription level root from perturbations in

the upstream signaling pathways, leading

to the activation or inactivation of key

regulators. For example, the IFN-stimu-

lated response element (ISRE) is associ-

ated with antigen processing and presen-

tation. It is indeed known that interferon

b increases gene expression at the tran-

scriptional level through binding of factors to the ISRE upstream

of interferon-inducible genes, such as HLA class I (Lefebvre

et al., 2001).

In another case, genes harboring the MEF-2 motif show signif-

icant changes in expression level across different tumor types

(Figure S4A). These perturbations are, by and large, comparable

across similar cancers, e.g., MEF-2 target genes tend to be up-

regulated in most lung cancer samples (Figure S4A). MEF-2,

which in our study is associated with ‘‘cell-cell adhesion’’

(Figure 6), is a known regulator of aT-catenin promoter (Van-

poucke et al., 2004). The loss of a-catenin expression, a cad-

herin-associated protein, results in the disruption of cell-cell

adhesion and is associated with an increase in tumor malignancy

(Shimoyama et al., 1992).

In addition to promoter motifs, there are also a large number of

predicted 30UTR elements associated with key pathways.

Recent studies have highlighted the role of miRNAs in tumori-

genesis and metastasis (e.g., Tavazoie et al., 2008). Among

them is miR-203, which was found to be downregulated in meta-

static cells from breast-cancer tumors (see Figure 1a in Tavazoie
906 Molecular Cell 36, 900–911, December 11, 2009 ª2009 Elsevier Inc.
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et al., 2008). Interestingly, our approach associates this miRNA

with ubiquitin-dependent protein catabolic process (Figure 6).

Similarly, we have also associated three known miRNA target

sites, miR-377, miR487a, and miR-582, with ‘‘cofactor biosyn-

thesis,’’ ‘‘angiogenesis,’’ and protein degradation, respectively

(Figure 6).

We also discovered a large number of previously uncharacter-

ized motifs that are associated with deregulated pathways

(Figure S4C and Table S2). For example, AA[CT]N[AC]CG is

a putative upstream binding element that our analysis associates

with genes involved in chromatin assembly (Figure 6). Genes

with the TACGN[AC] motif in their promoters, on the other

hand, tend to be involved in ‘‘DNA repair,’’ ‘‘mRNA processing,’’

and protein folding (Figure 6). Besides these upstream elements,

we also discovered many associations involving predicted RNA

motifs from 30UTRs. For example, GN[CU]U[GU]UA is associ-

ated with DNA repair, GGC[CU]CU[AU] with chromatin

assembly, and AANGGCNCU with ‘‘PI3-K signaling’’ (Figure 6).

Our discovery of a large number of RNA motifs suggests an

important role for as-yet-unknown miRNAs or RNA binding

regulatory proteins in cancer.

Experimental Validation of Predicted Regulatory
Interactions
All known and putative cis-regulatory elements presented in

Figure S4A are strongly associated with multiple cancer data

sets. These elements are therefore very likely to be functional

regulatory sequences, e.g., binding sites for transcription factors

or RNA-binding proteins, with a broad impact on gene expres-

sion. Nevertheless, they are computational predictions that

ought to be validated experimentally. In order to test these

predictions, we used an oligonucleotide decoy transfection

strategy, where the presence of double-stranded DNA titrates

away the cognate TF from its genomic target sites and causes

a measurable change in their expression (Cutroneo and Ehrlich,

2006; Sinha et al., 2008). We chose to test the upstream

sequence motif AAAA[AGT]TT, which is independently discov-

ered in more than 15 cancer data sets in Figure S4A. We trans-

fected double-stranded decoy oligonucleotides containing this
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Figure 6. Cancer Pathway-Regulatory

Interaction Map

Shown is a subset of the cis-regulatory motif-

pathway associations from the cancer pathway-

regulatory interaction map in Figure S4C. As in

Figure 2C, red entries represent positive associa-

tions between pathways and regulatory elements.

motif into MDA-MB-231 cells, using a

shuffled version of each sequence as a

control (see the Supplemental Experi-

mental Procedures). We then performed

expression profiling 72 hr posttransfec-

tion. The genes harboring AAAA[AGT]TT

motif showed a significant nonrandom

distribution across the expression profile,

with a significant enrichment in the upre-

gulated genes (Figure 7A). These experi-

mentally obtained results thus show that the computationally

predicted AAAA[AGT]TT motif is capable of influencing the

expression of many genes in human cells. In addition, we

observed that in our pathway-regulatory interaction map,

AAAA[AGT]TT is significantly associated with chromatin

assembly and cell-cell adhesion pathways. Consistently, iPAGE

discovers these pathways to be significantly deregulated across

the profile (Figure 7B). Interestingly, mitotic genes are also

notably deregulated in MDA-MB-231 cells, which may indicate

a key tumorigenic role for the unidentified protein that binds to

this element (Figure 7B).

We then sought to perform experiments to test our ability to

identify motif-pathway associations using siRNA knockdowns

of selected transcription factors in MDA-MB-231 cancer cell

lines, followed by gene expression profiling (see the Supple-

mental Experimental Procedures). Our analyses predicted that

Elk1-regulated genes in primary tumors are also components

of several pathways including mitotic cell cycle, DNA replica-

tion, ribosome biogenesis, protein catabolism, and RNA

splicing (Figure 2B). The gene expression profile of MDA-MB-

231 cells upon Elk1 knockdown shows a significant deregula-

tion in four of these pathways (Figure 7C). The anticorrelation

between Elk1 and the mitotic cell cycle, ribosome biogenesis,

and RNA splicing genes, which was previously discovered in

the bladder carcinoma data set (Figure S2C), was also

observed here. Our analysis of the BL versus DLBCL data set

(Figure 3C) also predicted that NFYA-regulated genes are often

involved in mitotic cell cycle, microtubule-based movement,

and chromatin structure. The iPAGE analysis of the gene

expression profile of MDA-MB-231 cells upon NFYA knock-

down indeed revealed the broad deregulation of mitotic cell

cycle (Figure 7D). The expression profiles for the TF knock-

downs and decoy versus scrambles experiments can be

accessed from GEO (GSE18874), and the processed data

along with detailed results are also available online at http://

tavazoielab.princeton.edu/iPAGE/. Altogether, these experi-

mental results clearly demonstrate that the iPAGE/FIRE compu-

tational predictions correspond to true and functional in vivo

regulatory interactions.
Molecular Cell 36, 900–911, December 11, 2009 ª2009 Elsevier Inc. 907
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Figure 7. Experimental Validation of the Discovered Associations

(A) Genes harboring the AAAA[AGT]TT motif are upregulated upon transfection of decoy oligonucleotides matching that sequence.

(B) Transfection of AAAA[AGT]TT oligos deregulates the expression of mitotic cell cycle, chromatin assembly, and cell-cell adhesion genes (see also Figure S5A).

(C) Knocking down Elk1 mRNA upregulates genes in several pathways associated with the binding site of this transcription factor (see also Figure S5B).

(D) Knocking down NFYA is accompanied by upregulation in the mitotic cell-cycle genes (see also Figure S5C).
DISCUSSION

The identification of regulatory pathways whose perturbations

are causal to the initiation and maintenance of the tumor state

is one of the major challenges in cancer biology. In this study,

we have introduced a computational framework for simulta-

neous extraction of perturbed cellular pathways and their under-

lying regulatory programs from cancer gene expression data

sets. Our results clearly show a general overexpression of mitotic

pathways and downregulation of immune-response pathways in

tumors compared to normal tissues; however, we did not detect

any other ‘‘universal’’ tumor pathway signature. The diversity of

the perturbed pathways, and their association with specific

cancers, as represented in the cancer pathway map, highlights

the broad heterogeneity underlying the tumor cellular state.

Despite this heterogeneity, pathway-level analysis of cancer

gene expression can be employed for classification purposes

in the sense that the tumors with similar phenotypes (in terms

of which pathways are deregulated and to what extent) can be

identified (one such analysis is described in detail in the Supple-

mental Results and clearly shows that similar cancers tend to

cluster together when compared on the basis of their deregu-

lated pathways).

In addition to uncovering the deregulated pathways, we have

employed a de novo and systematic cis-regulatory element

discovery strategy in order to identify the regulators (transcrip-

tion factors, miRNAs, or RNA-binding proteins) through which

the perturbations in the cellular pathways come about. The regu-

lators that we identify using our approach are often downstream

effectors of signaling pathways with long-established roles in

tumorigenesis, and we uncover a substantial fraction of them.

Our approach predicts the involvement of many known tran-

scriptional or posttranscriptional regulators in cancer-associ-

ated pathways, thus revealing putative oncogenes and tumor

suppressors and yielding potential drug target candidates. We
908 Molecular Cell 36, 900–911, December 11, 2009 ª2009 Elsevier
have validated some of the predicted associations using

siRNA-based knockdown of transcription factors followed by

gene expression profiling in cancer cell lines.

Prior studies that addressed the problem of uncovering regu-

latory networks perturbed in cancer have largely relied on known

cis-regulatory elements or genome-wide binding data (ChIP-

chip), e.g., Lemmens et al. (2006) and Sinha et al. (2008).

However, on average, only 10% (�32/292) of our discovered

motifs correspond to previously known binding sites, even

though a majority of them are conserved when evaluating

conservation using the network-level approach described in El-

emento and Tavazoie (2005) (see Figure S4B). This underscores

both the complexity and our relatively primitive understanding of

the tumor state. For example, we discovered 11 putative regula-

tory elements with significant positive associations with DNA

repair (p < 10�3). Besides, many regulatory elements are highly

informative about groups of coordinately regulated genes in

cancer versus normal tissues but are not associated with any

known pathways. We hypothesize that these putative regulatory

elements predict previously uncharacterized cancer-associated

pathways. Similarly, only a minority of the 30UTR elements we

discovered (�10%) match known miRNA target sites. These

findings point to a largely unexplored role for posttranscriptional

regulation (involving both miRNAs and RNA-binding proteins) in

cancer. These cis-regulatory element predictions provide

molecular ‘‘anchors’’ into the sequence, allowing subsequent

identification of their cognate trans-factors and the upstream

signaling pathways using techniques such as that in Freckleton

et al. (2009).

To conclude, we have introduced a powerful framework for

revealing regulatory perturbations in cancer. We anticipate that

this framework, freely available at http://tavazoielab.princeton.

edu/iPAGE/, will enable the rapid and comprehensive analysis

of cancer expression data by experts and nonexperts alike.

As a final note, we stress that although our analyses here have
Inc.

http://tavazoielab.princeton.edu/iPAGE/
http://tavazoielab.princeton.edu/iPAGE/
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been focused on gene expression perturbations in cancer, our

framework is general in concept and can be utilized to study

regulatory perturbations across other human diseases.

EXPERIMENTAL PROCEDURES

Preprocessing of Input Data Sets

All cancer microarray data sets used in this study were downloaded from Gene

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/projects/geo/).

Each cancer versus normal data set was converted into continuous or discrete

gene expression profiles, as follows.

In the continuous case (e.g., urinary bladder cancer), each gene was asso-

ciated with a continuous expression value based on the Student’s t test

p values and the direction of expression changes between the cancer samples

and the normal controls (see the Supplemental Experimental Procedures). In

the discrete case, genes were first clustered into �
ffiffiffiffi

N
p

groups (N is the total

number of genes), using the k-means unsupervised clustering approach,

and based on their expression values in the normal and tumor samples.

Then the clusters whose average expressions did not differ between the

normal and cancer samples (nominal p value from t test > 0.05, where the

t test is performed on the expression profiles in each cluster) were combined

into one background cluster. Subsequently, each gene was associated with

the cluster index of the cluster to which it belongs.

iPAGE: Pathway Analysis of Gene Expression

The concept of MI is applicable to both continuous and discrete random

variables (Cover and Thomas, 2006). However, in practice, continuous expres-

sion profiles must be quantized in order to compute MI values. In iPAGE, we

quantize continuous expression data into equally populated bins (as described

in Slonim et al., 2005). iPAGE then calculates the MI between a vector of

expression values and a binary vector of pathway memberships for every

pathway. The significance of the calculated MI values is then assessed

through a randomization-based statistical test. Prior to testing a pathway,

we also evaluate whether a statistically significant pathway that is very similar

to the one that is being evaluated has already been found (see the Supple-

mental Experimental Procedures for details).

We then use hypergeometric distribution to determine the level with which

the significantly informative pathways are overrepresented or underrepre-

sented in each expression bin or cluster (for details, see the Supplemental

Experimental Procedures). We use the resulting p values to draw a heat

map, in which rows represent significant pathways and columns correspond

to expression bin/clusters. In this heat map, red entries correspond to pathway

overrepresentations, while blue entries correspond to underrepresentations.

FIRE: De Novo Discovery of Informative Regulatory Elements

FIRE was used with default settings, as described in Elemento et al. (2007).

Pathway-Regulatory Interaction Maps: Associating Regulatory

Elements with Their Target Pathways

In order to associate the FIRE cis-regulatory elements with the iPAGE

pathways they may control, we calculate pairwise MI values between all

(pathway, motif) pairs. We first create pathway profiles based on pathway

memberships. Motif profiles are also created, indicating whether each gene

contains at least one copy of the evaluated motif in its promoter region

(or 30UTR for RNA motifs). The (pathway, motif) pairs that pass the randomiza-

tion-based statistical test for significant MI values are accepted. For these

pairs, the sign and significance of the associations are determined using the

hypergeometric distribution, as described above for iPAGE. The hypergeo-

metric p values are then used to draw heat maps (which we call pathway-

regulatory interaction maps), where columns correspond to cis-regulatory

elements and rows correspond to pathways (for details, see the Supplemental

Experimental Procedures).

Transfection of Decoy and Scrambled Oligonucleotide Sequences

For the validation experiments, we chose two of the genes implicated by FIRE

to have a version of AAAA[ATG]TT (NM_000337 and NM_001024660). For
Mole
each gene, we then synthesized a 19 bp sequence containing the

AAAA[ATG]TT motif. These sequences were also randomly shuffled to create

scrambled sequences as controls. The resulting sequences were synthesized

as double-stranded oligonucleotides: Decoy1, caattGAAATTTTGagcaa;

Scrambled1, gtTtATAcAcTaaaGaTGa; Decoy2, gctggAAAAAATTTaagac;

Scrambled2, aagATTgctAgAAgAaATc. We then transfected these oligonucle-

otides into MDA-MB-231 cells grown in D10F medium at a concentration of

1 mM (TransIT-Express Transfection Reagent). Seventy-two hours after trans-

fection, we extracted RNA and labeled the samples with Cy3 (deocy) or Cy5

(scrambled) dyes. The samples were then hybridized to Agilent human gene

expression arrays (4 3 44,000). The Cy3/Cy5 log ratios from the two sets

were then averaged, filtered, and combined in a single data set. In this step,

we filtered out �2000 genes that showed significantly discordant expression

level changes in the two biological replicates.

Transfection of siRNAs Targeting Elk1

and NFYA Transcription Factors

An ON-Targetplus (Dharcomon) set of siRNAs for each TF was transfected into

MDA-MB-231 cells using Lipofectamine 2000 (invitrogen). Seventy-two hours

after infection, RNA samples were extracted from the cells (mirVana miRNA

Isolation Kit) and were subjected to cDNA synthesis (SuperScript III RTS

First-Strand cDNA Synthesis Kit from Invitrogen). mRNA knockdown in each

sample was verified using SYBR Green qPCR reactions (Universal ProbeLi-

brary Assay Design Center, Roche Applied Science). For each TF, we selected

two of the successfully knocked down transfections and extracted their total

RNA along with mock-transfected cells as controls. We then labeled the

RNA samples with Cy3 and hybridized them to Agilent human gene expression

arrays with Cy5-labeled mock-transfection RNA as control. The genes with

significant discordant changes between the two biological replicates were

filtered out, and for the rest, the log of Cy3/Cy5 ratio was averaged and

combined into a single data set.

ACCESSION NUMBERS

The expression profiles for the TF knockdowns and decoy versus scrambles

experiments have been deposited in the Gene Expression Omnibus (GEO)

under accession ID GSE18874.

SUPPLEMENTAL DATA

Supplemental Data include five figures, two tables, Supplemental Experi-

mental Procedures, and Supplemental References and can be found with

this article online at http://www.cell.com/molecular-cell/supplemental/

S1097-2765(09)00857-0.
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